穿进数学书怎么破_第78章(1 / 2)

原来它手里的瓶子就是密码!涂化连忙点头,却听猴子道:“想要拿到密码可以,但是要帮我解决一个问题。”

涂化:“什么问题?”

老猴道:“昨天白天我们猴群去摘了一批果子,要把这批果子均分给五个部落。第一个部落的首领来到这里的时候,发现果子没办法分成5份,于是它吃掉了一个,就正好平分了。他拿走属于自己部落的那一份就走了。”

“当第二个部落的首领来到这里的时候,看到剩余的果子,还以为第一个部落并没有拿走,所以它也吃掉了一个果子,把果子均分成5份,拿着自己的那份走掉了。”

“剩下的三四五部落的首领和前两个猴子一样,都是吃掉一个之后再均分成5份。现在,我们对这堆果子的数量产生了争执,你能不能告诉我们,这堆果子到底有多少个?”

第58章

涂化不由得陷入沉思, 这道题目看似有很多已知条件,但实际上却没有最关键的条件。如果猴子们告诉他最后还剩了多少颗果子,他兴许还能推断出一个准确的数字, 可按照当下的分配方法, 符合条件的结果可以说有无数种。

因为猴子只告诉他这堆果子被五个猴子分别吃掉一个之后,又进行了均分,并没有说明在某一环节的具体数字,也就是说缺乏了一个准确限定条件。

涂化决定先理出头绪,再想办法确认这堆果子的限定条件。

他心算能力不好,所以捡了根木棍, 蹲在地上把思路记下来。

首先,这堆果子的数量正好可以分成5份多一颗, 那就意味着假如再多4颗果子,这堆果子就正巧可以均分了。所以假设多给4个果子之后的果子数量为a。

那么第一个猴子过来时把果子均分成5份, 拿走了一份之后, 剩余的果子数量为ax4/5;第二个猴子再次均分,并且拿走了一部分之后,剩余的果子数应该为ax4/5x4/5;同理,第三个猴子拿走了属于自己的那份果子之后,剩余的果子数量是ax4/5x4/5x4/5;第四只猴子取走之后剩下的果子为ax4/5x4/5x4/5x4/5;最后一只猴子取走之后剩余ax4/5x4/5x4/5x4/5x4/5。

所以依据上面的推算,所有猴子都拿完之后,果子的剩余数量是ax(4/5)^5, 也就是ax1024/3125。

但由于猴子们并没有给出限定条件, 这堆果子的数量a取整的方法有无数种, 当然,其中最小的那一种正好就是3125颗。

而按照3125的总数进行分配的话,第五只猴子拿走了属于他的那一份之后,剩余的果子数是1024,而这1024颗果子是被均分成五分之后剩余的那四份,所以第五只猴子拿走的果子数量正巧是1024÷4=256个。

涂化把这个数字写了下来,他必须想办法向猴群确定某一批果子的数量,否则永远也无法推算出来总共有多少个果子。

涂化看向那只猴子首领:“最后一个拿走果子的部落首领在这里吗?”

老猴从猴群中带了一只身材比较强壮的猴子过来:“就是他。”

涂化问道:“你们部落总共有多少猴子呢?”

最后拿果子的猴群首领道:“我们部落总共有五十多个猴,大家都已经分到了果子。”

“那么他们各分到了多少个?”

那猴子抓耳挠腮了一会儿,终于想起来:“每个猴都分到了4个果子,最后还剩了一些不够分了,我就把那些果子分散给了孩子们。”

总共50多只猴子,每人分得4颗果子,最后剩下一些不够分……这很显然符合256这个数字!

而对于ax1024/3125这个数结果取整的话,a等于3125是最小的答案,也就是说第五个猴子拿到的果子数为256是最小的整数结果,如果数字再大一些,就显然不符合第五个拿果子的那只猴子对自己部落的描述了。

所以根据种种已知条件和推理,a=3125是正确答案。

但起初在作出假设的时候,涂化设定的条件是给这堆果子再加上4个果子以保证它们能够被均分,也就是说真正的果子数量应该是在3125的基础上减去4,即3121个。