213章 黎曼假设的新思路(1 / 2)

七个千年数学难题真的很难破解。!

目前只有庞加莱猜想被攻克,俄罗斯数学家佩雷尔曼在数学天才吕丘建的基础彻底证明了庞加莱猜想。

黎曼假设提出于19世纪,跨越整个20世纪,在21世纪今天依旧金身不破。

任何一位研究数论的数学家都有欲望证明rh,这将是载入史册的丰功伟绩。

正如哥猜的证明过程那般困难,rh历经三个世纪并未被完全证明。

哥猜的1+1亦未被证明,但陈景润先生证明了1+2,这是最接近哥猜的一个结果。

一步到位完全证明rh、哥猜是不容易做到的事情,历史说明了一切。

数学家们对于rh的阶段性证明持续了几个世纪。

关于黎曼zeta函数ζ(s)的表示公式,对任意复数,若re(s)>1,则:

ζ(s)=Σn-s=n(1-p-s)-1

其n为自然数,p为素数。

数学家们想尽了一切办法,用尽了一切手段,从欧拉经典公式到伯努利数,再到正数时的拉马努金公式,终于作出了重要的阶段性进展,k=3,5和k=4,6,7的特殊情况得到了当代全部数学家的认同。

现在,阶段性进展和rh完全证明之间还差一道桥梁。

这道承启下的关键桥梁是ζ(2n+1)的两个递推公式。

如果能证明ζ(2n+1)的两个递推公式,那么沈相信,穆勒教授的团队离最终证明rh已不远。

让沈兴奋的是,他手的这份半成品论,正是关于ζ(2n+1)两个递推公式的论述证明。

这份论的框架由穆勒设定,具体论述证明由玛丽执笔。

显而易见,穆勒教授的战略方向是正确的,但玛丽的战术执行成效甚微。

玛丽的战术打法太老套,按你这种计算证明推导逻辑,rh早该被完全证明了,但事实并非如此。沈将论稿还给穆勒,说到:“我们需要一个新的引理,证明k=1时的结论成立,那么ζ(2n+1)两个递推公式有望合情合理的被推导出来,从而向rh的完全证明发起总攻。”

“嘿,孩子,我也曾这么考虑过!”穆勒眼睛一亮,望向沈。

“我们?”玛丽质疑的看着沈,随即理所当然的说到:“对,我们,这是我和艾伦共同研究的课题。”

“玛丽,我有个大胆的想法,可以邀请沈加入我们的团队,共同研究ζ(2n+1)这个课题。你觉得呢?”穆勒非常民主,他礼貌地询问他的学生玛丽。

“我觉得,我们应该维持现状,因为现状并没有什么不妥。”玛丽露出一种古怪的表情。

“我很乐意加入穆勒教授ζ(2n+1)课题项目组。”沈不理会玛丽的质疑表情,直接向穆勒表明决心。

“你的主攻方向是数学物理,辅助方向是代数几何。沈,别告诉我你还想再加一个数论方向。”玛丽冷冷说到。

“穆勒教授是我的偶像,他精通数学物理、代数几何、数论、群论等多个领域。我的二辅选择数论,对于我,对于整个团队并无坏处。”沈答到。

“沈,如果你的女朋友同意你辅修数论,我没什么问题,之前我跟你说过,你为什么不选择数论,毕竟你是埃隆表扬过的学生。”穆勒有意让沈跟玛丽合作。