欧叶进入答辩会现场,将她的博士论投影到屏幕。
“弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈和林登施特劳斯。
主答辩官弗拉蒙特教授是一张p:u'k:e脸,他不苟言笑的说到:“欧,这是你的博士研究生第四学期。”
欧叶点点头:“是的。”
弗拉蒙特教授为人严厉,沈为欧叶捏了把汗。
不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。
弗拉蒙特教授:“欧,你的博士论《耶斯曼诺维猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”
欧叶:“好的。”
3到5分钟的陈述?沈有些意外,正常情况下博士研究生的开场陈述时间在15-20分钟之间。
林登施特劳斯扭头笑了笑,他的眼神告诉沈:我们很宽容,因人而异。
欧叶手持翻页笔,切换她博士论的ppt
欧叶切到第3页:“这个,卢卡斯序列。”
欧叶在第4页不做停留,直接切到第5页:“这个,卢卡斯偶数,等价。”
ppt页码显示有101页,欧叶平均5秒钟过一页。
三位答辩官并未提出任何异议,静静的看着欧叶飞快的刷ppt。
power-point,这是真正的ppt……沈从未见过如此简洁的ppt汇报,而ppt的精髓正是如此:强烈的观点。
制作ppt的要点在于突出每一页的重点,ppt汇报者在有限时间内须用最精炼的语言表达最强烈的观点。
欧叶的ppt表达精炼到极致,101页,她5分钟陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。
“ok,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到:“你刚才提到了卢卡斯序列,并在论定义为un=un(α,β)=αn-βn/α-β,其n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”
弗拉蒙特教授这个问题是个陷阱啊……沈已将欧叶的打印版论过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。
欧叶神志清醒反应灵敏,她答到:“无法求出。”
弗拉蒙特教授追问:“为什么?”
欧叶切换ppt到13页,操作翻页笔的激光照射到un(α1,β1)=±un(α2,β2),并同步解释:“它不具备,本原素除子。”
“是吗?你确定?”弗拉蒙特教授继续追问。